

ARC Corridors

ADHS Program

- Established in 1965
- 3090 miles
- 87 percent complete
- Kentucky has 8 corridors (93 % complete)
- Kentucky share \$39 million in 2009
- State match \$10 million in 2009

1991 to 1995 - Planning Study

Preliminary Design (1995-1996)

- Design Parameters
 - 60 MPH
 - 6% maximum grade
 - 4 lanes with 40' depressed median
 - Avoid blueline streams
 - Access to State Routes (10% max ramp grade)
 - At-grade intersections only at limited locations
 - Contractor to identify and acquire waste areas

Environmental

- Public Hearing Held in October of 1998
- FONSI approved in January of 1999
 - Over 200 residential relocations
 - Blueline stream impacts
 - Cemetery archeology

1998 - Final Design Begins

- 13 Grade and Drain Sections
- 2 Russell Fork Bridge Sections
- 4 Surfacing Sections
- \$550 Million Total Construction Cost

KRS 176.525 (1998)

- Minimum 4 acres
- For city, county, or other governmental agencies
- Compacted to roadway standards
- Five US 460 sites identified
 - Left Fork of Wolfpit Branch 44 acres
 - Jessie Branch 4 acres
 - John Moore Branch 74 acres
 - Stonecoal Fork 32 acres
 - Wolfpen Branch 17 acres

Defined Excess Material Development Sites

Left Fork of Wolfpit

109 acres acquired (44 developable)

Stonecoal Fork

126 acres acquired (32 developable)

Stonecoal Fork

Excess Material Site Development Challenges

- Economic Justification
- Access Issues with Property Remainders
- Contractor Access
- Corps of Engineers Permit Approval

Permitted Excess Material Sites

- Areas Needed to Balance Sections
- Over-permitted
- Not Acquired in Right of Way

Section Splits

... we're not in Kansas any more

Kansas Dog

Bridge Challenges

#1 - Bridge over Troubled Waters

#3 - Bridge vs. Tunnel vs. Culvert

#4 - Beam Delivery Route

Existing Roads

Drive if Questionable

Along other New Construction

Difficult to predict Phasing

#5 - Mine Subsidence

Previously

- Provided CL stations
- Substructure Skew Angle

Currently

- Provide CL stations & Approx. Footing Size
- Better for Geotech to plan borings

#8 - Piers in Existing Fill

